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Abstract
Medical advances prolonging life have led to more permanent pacemaker implants. When pacemaker implantation (PMI) 
is commonly caused by sick sinus syndrome or conduction disorders, predicting PMI is challenging, as patients often 
experience related symptoms. This study was designed to create a deep learning model (DLM) for predicting future PMI 
from ECG data and assess its ability to predict future cardiovascular events. In this study, a DLM was trained on a data-
set of 158,471 ECGs from 42,903 academic medical center patients, with additional validation involving 25,640 medical 
center patients and 26,538 community hospital patients. Primary analysis focused on predicting PMI within 90 days, 
while all-cause mortality, cardiovascular disease (CVD) mortality, and the development of various cardiovascular condi-
tions were addressed with secondary analysis. The study’s raw ECG DLM achieved area under the curve (AUC) values 
of 0.870, 0.878, and 0.883 for PMI prediction within 30, 60, and 90 days, respectively, along with sensitivities exceeding 
82.0% and specificities over 81.9% in the internal validation. Significant ECG features included the PR interval, corrected 
QT interval, heart rate, QRS duration, P-wave axis, T-wave axis, and QRS complex axis. The AI-predicted PMI group 
had higher risks of PMI after 90 days (hazard ratio [HR]: 7.49, 95% CI: 5.40-10.39), all-cause mortality (HR: 1.91, 95% 
CI: 1.74–2.10), CVD mortality (HR: 3.53, 95% CI: 2.73–4.57), and new-onset adverse cardiovascular events. External 
validation confirmed the model’s accuracy. Through ECG analyses, our AI DLM can alert clinicians and patients to the 
possibility of future PMI and related mortality and cardiovascular risks, aiding in timely patient intervention.
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events
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Introduction

Permanent pacemaker therapy is most commonly indicated 
for high-degree atrioventricular block (AVB) and sinus node 
dysfunction patients [1]. These conditions are often associ-
ated with degeneration of the cardiac conduction system and 
changes in intercellular conduction, which can be caused by 
either cardiac or noncardiac disease. The use of pacemakers 
has shown a continuous increase, which can be attributed 
to increasing life expectancy and aging populations world-
wide. The estimated number of patients undergoing pace-
maker implantation has been consistently increasing, with 
an annual implant rate of approximately one million devices 
globally [2, 3]. Due to the prevalence of these conditions 
in older patients, the majority of patients requiring car-
diac pacing are elderly, with more than 80% of pacemaker 
implants occurring in patients older than 65 years [4]. Per-
manent pacemaker implantation (PMI) not only enhances 
the survival rate but also significantly improves quality of 
life as evidenced by various studies conducted on patients 
receiving pacing therapy [5–13]. However, predicting the 
need for PMI is challenging because some patients may not 
exhibit clear symptoms until the condition has progressed 
to a severe stage, such as involving injuries from falling 
or even cardiac arrest. In addition, certain risk factors that 
increase the likelihood of PMI, such as hypertension and 
diabetes, can be present in individuals without any obvious 
signs of heart disease. This can make it difficult to identify 
those who would benefit from a PMI before they experience 
a cardiac event. As a result, there is a need for more accurate 
and reliable methods to predict the need for future PMI.

Artificial intelligence (AI) has emerged in the medical 
field and is being facilitated by technological advancements 
in machine learning [14, 15]. These advances include the 
use of structured data sources, which can be captured in 
a spreadsheet format, unstructured data sources, such as 
free text in electronic medical records (EMRs), and medi-
cal images, such as electrocardiograms (ECGs) and echo-
cardiography. With the assistance of deep learning models 
(DLMs), AI systems can develop highly accurate clinical 
prediction models, which are categorized into two major 
groups: diagnostic prediction models and prognostic pre-
diction models [16, 17]. AI is being increasingly utilized to 
address various health care challenges related to CVD. Some 
examples of this include the automated detection of cardiac 
arrhythmias from ambulatory ECGs, the early detection of 
aortic stenosis and acute myocardial infarction (AMI), and 
the prediction of future adverse cardiovascular events in 
patients receiving digoxin therapy [16, 18–20]. This study 
was designed to utilize DLM-assisted AI to analyze ECGs 
for the early detection of the need for PMI. Furthermore, 
since ECGs contain a wealth of physical information that 

can predict future CVD incidence, we hypothesized that this 
model could provide additional information on the likeli-
hood of major adverse cardiovascular events (MACEs).

Methods

Data Source and Population

We conducted a study to develop and evaluate a DLM by 
retrospectively analyzing ECGs collected from two hospi-
tals between January 1, 2010, and April 30, 2021. The two 
hospitals included an academic medical center in Neihu 
District (hospital A) and a community hospital in Zhong-
zheng District (hospital B). To ensure ethical compliance, 
the study was reviewed and approved by the Institutional 
Ethics Committee of the Tri-Service General Hospital 
(C202105049). Patients under 20 years of age were excluded 
from the study. Figure 1 shows the assignment of samples 
in this study. There were 85,820 patients with at least one 
ECG in hospital A. The 42,903 patients were included in the 
development cohort, which included 158,471 ECG records 
for DLM training. A total of 17,277 patients were assigned 
to the tuning cohort. A total of 64,462 ECGs were obtained 
to guide the training process and determine the optimal oper-
ating point for subsequent usage. Finally, 25,640 patients 
were assigned to an internal validation set, which included 
only the first ECGs that were used for the accuracy test and 
follow-up analysis. We also enrolled 26,538 patients in hos-
pital B using the same inclusion criteria as those in the inter-
nal validation set for the external validation set to verify the 
extrapolation of the DLM.

Data Collection

A 12-lead ECG was recorded at a 500-Hz frequency for a 
duration of ten seconds, and the raw ECG traces were used 
to train the DLMs. Besides the raw-data ECG tracings, addi-
tionally analyzed ECG data included various abnormalities 
and findings, comprising 31 diagnostic pattern classes and 
8 continuous ECG measurements obtained from quantita-
tive measurements and abnormal findings based on standard 
phrases in the Philips’ system (PageWriter TC30 and TC50, 
Philips, Amsterdam, Netherlands). Specifically, the abnor-
mal ECG patterns detected included: abnormal T wave, 
atrial fibrillation, atrial flutter, atrial premature complex, 
complete atrioventricular (AV) block, complete bundle 
branch blocks (including complete left bundle branch block 
and complete right bundle branch block), first-degree AV 
block, incomplete bundle branch blocks (including incom-
plete left bundle branch block and incomplete right bundle 
branch block), ischemia/infarction (indicating myocardial 
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ischemia or infarction), junctional rhythm, left anterior fas-
cicular block, left atrial enlargement, left axis deviation, 
left posterior fascicular block, left ventricular hypertrophy, 
low QRS voltage, pacemaker rhythm, prolonged QT inter-
val, right atrial enlargement, right ventricular hypertrophy, 
second-degree AV block, sinus bradycardia, sinus pause, 
normal sinus rhythm, sinus tachycardia, supraventricular 
tachycardia, ventricular premature complex, ventricular 
tachycardia, and Wolff-Parkinson-White syndrome. These 
latter data were used to generate and train an extreme gra-
dient boosting (XGB) model, as previously described [21]. 
They reflect a variety of cardiac conduction system abnor-
malities, arrhythmias, structural abnormalities, and other 
conditions. ECG measurements with missing data were 
imputed using multiple imputation methods [22]. The dis-
ease histories were based on the International Classification 
of Diseases, Ninth Revision and Tenth Revision (ICD-9 and 
ICD-10, respectively) as described previously [23]. The pri-
mary objective was to predict PMI 90 days after the index 
ECG. Patient status was defined by EMRs and updated by 
hospital staff. Nonimplant pacemaker data were censored 
at the patient’s last known live hospital visit to limit bias 
from incomplete records. We also performed a secondary 
outcome analysis of all-cause mortality, CVD mortality and 
new-onset MACEs, such as AMI, stroke, coronary artery 
disease (CAD), atrial fibrillation (AF), and heart failure 
(HF). New-onset events were defined as records of corre-
sponding ICD codes. Patients who met any of the above 

criteria before the index date of the ECG were excluded and 
defined as having a corresponding disease history.

Implementation of the Deep Learning Model

The major architecture of the proposed survival DLM for 
the prediction of PMI and the detailed derivation and expla-
nation process are summarized in Supplement Fig.  1. In 
brief, each ECG was recorded as a standard 12 leads con-
sisting of 5000 number sequences, and a 5000 × 12 matrix 
was generated based on these sequences for the DLM. An 
input format of this architecture is a 4096 × 12 matrix [21]. 
We developed a DLM using the Cox proportional hazard 
model to conduct survival analysis, the model being com-
monly used for prospective studies with a follow-up period 
to observe event occurrence. The DLMs were trained with 
a batch size of 32 using an initial learning rate of 0.001 and 
an Adam optimizer with standard parameters (β1 = 0.9 and 
β2 = 0.999). The learning rate was decayed by a factor of 10 
each time the loss of the validation cohort plateaued after 
an epoch. To prevent the networks from overfitting, early 
stopping was performed by saving the network after every 
epoch and choosing the saved DLMs with the lowest loss 
in the validation cohort. The only regularization method for 
avoiding overfitting was L2 regularization, for which the 
coefficient was 10− 4 in this study.

Fig. 1  Flowchart diagram of development, tuning, internal validation, 
external validation set generation and ECG labeling for pacemaker 
implantation. Schematic of the dataset creation and analysis strategy, 
which was devised to assure a robust and reliable dataset for training, 
validating, and testing the network; to prevent cross-contamination 

among the training, validation, and test datasets, each patient’s data 
were exclusively used in one dataset; the Methods section provides 
detailed information on how each dataset was utilized; DLM, deep 
learning model; ECG, electrocardiogram
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hyperlipidemia, chronic kidney disease, stroke, CAD, AF, 
and chronic obstructive pulmonary disease but a lower pro-
portion of male patients than did the other sets. Conversely, 
there were fewer instances of AMI in the internal validation 
set than in the other sets.

In Fig. 2, we present the performance of the DLM in pre-
dicting the PMI within 30, 60, and 90 days in both the inter-
nal and external validation sets. With respect to the internal 
validation set, the AUC for predicting PMI within 30 days 
was 0.870, with a Sens of 82.0%, a Spec of 81.9%, a PPV of 
1.2%, and an NPV of 99.9%. The AUC values for predicting 
the PMI within 60 days and 90 days were similar (0.878 and 
0.883, respectively). With respect to the external validation 
set, the AUC for detecting PMI within 30 days was 0.916, 
with a Sens of 85.3%, a Spec of 80.9%, a PPV of 1.2%, 
and an NPV of 100.0%. The AUCs for predicting the PMI 
within 60 and 90 days were 0.920 and 0.919, respectively. 
The results obtained from the external validation set were 
consistent with those of the internal validation set, provid-
ing evidence for the ability of the model to accurately pre-
dict future pacemaker implantation.

Figure 3 presents a detailed analysis of the importance of 
the 12 most important ECG features in relation to the PMI 
as assessed by the information gained from the XGB model. 
The R2 values were 59.5% and 62.7% based on all the tra-
ditional ECG features in the internal and external validation 
sets, respectively. In the internal validation set, the top 7 
ECG features that contributed to PMI were the PR interval, 
corrected QT interval, QRS duration, P wave axis, T wave 
axis, heart rate, and QRS complex axis. Similarly, in the 
external validation set, the top 7 ECG features that contrib-
uted to PMI were the PR interval, QRS duration, corrected 

Statistical Analysis

We provided descriptive statistics for the different sets, 
including means and standard deviations for continuous 
variables and counts and percentages for categorical vari-
ables. The performance of the DLMs was assessed using 
receiver operating characteristic (ROC) curves, and the 
area under the curve (AUC), sensitivity (Sens), specificity 
(Spec), positive predictive value (PPV), and negative pre-
dictive value (NPV) were reported. The optimal operating 
point was selected based on Youden’s index in the training 
set. For the additionally collected ECG data, we employed 
an XGB model to rank the importance of variables and 
investigate the relationship between PMI and explainable 
features. Furthermore, we used multivariable Cox propor-
tional hazard models to analyze the association between 
baseline characteristics and outcomes of interest. For the 
analysis of new-onset outcomes, we will analyze the popu-
lation without a history of that disease. We reported hazard 
ratios (HRs) and 95% confidence intervals (95% CIs) for 
comparisons. All the statistical analyses were conducted 
using R (version 3.4.4; R Core Team, 2018), for which the 
significance level was set at p < 0.05.

Results

Table 1 displays the baseline characteristics of the patients 
in the four distinct sets: development, tuning, internal 
validation, and external validation. The internal valida-
tion set had a significantly greater proportion of older 
patients and comorbidities, such as diabetes, hypertension, 

Development Tuning Internal 
validation

External
validation

Demography
Gender (male) 86,043(54.3%) 34,584(53.7%) 57,699(52.4%) 50,380(53.1%)
Age (years) 63.8 ± 17.0 63.6 ± 17.1 66.4 ± 17.0 64.0 ± 17.0
Height (cm) 162.2 ± 9.1 162.4 ± 9.1 162.6 ± 9.0 162.2 ± 9.1
Weight (cm) 64.5 ± 13.9 64.5 ± 13.8 65.2 ± 14.0 64.3 ± 13.8
BMI (kg/m2) 24.4 ± 4.3 24.4 ± 4.3 24.6 ± 4.3 24.4 ± 4.3
Primary outcome
Implant pacemaker within 90 days 1171(0.9%) 482(0.9%) 833(0.9%) 612(0.8%)
Disease history
Diabetes mellitus 50,412(31.8%) 19,984(31.0%) 44,224(40.1%) 30,386(32.0%)
Hypertension 18,460(11.7%) 7336(11.4%) 17,790(16.1%) 11,445(12.1%)
Hyperlipidemia 64,622(40.8%) 26,186(40.6%) 60,323(54.8%) 38,433(40.5%)
Chronic kidney disease 45,296(28.6%) 17,950(27.9%) 35,054(31.8%) 26,940(28.4%)
Acute myocardial infarction 9405(5.9%) 3762(5.8%) 6159(5.6%) 5559(5.9%)
Stroke 28,065(17.7%) 11,648(18.1%) 26,528(24.1%) 17,026(17.9%)
Coronary artery disease 51,361(32.4%) 20,503(31.8%) 45,129(41.0%) 30,581(32.2%)
Atrial fibrillation 13,335(8.4%) 5285(8.2%) 12,309(11.2%) 7521(7.9%)
Chronic obstructive pulmonary 
disease

31,497(19.9%) 12,511(19.4%) 35,212(32.0%) 18,729(19.7%)

Table 1  Baseline characteristics

Abbreviations BMI, body mass 
index
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AMI, stroke, CAD, AF, and HF, than did those in the non-
PACE group in both validation sets (Fig. 5).

Discussion

This DLM-enabled AI ECG analysis model accurately pre-
dicted future PMI, all-cause mortality, and CVD mortality. 
Additionally, this AI prediction model provided additional 
information on new-onset MACEs. Patients in the PACE 
group had a higher risk of pacemaker implantation after 90 
days, all-cause mortality, CVD mortality, and new-onset 
MACEs, such as AMI, stroke, CAD, AF, and HF.

The incidence of PMI increases with age, and it is esti-
mated that approximately 70–80% of all permanent pace-
makers are implanted in patients aged 65 or older. Previous 
surveys have identified high-degree AVB and sick sinus 
syndrome as the leading indications for PMI [2]. Both the 
increasing incidence and declining mortality rates of PMI 
have contributed to its growing prevalence [24]. However, 
predicting the need for PMI in a patient can be challeng-
ing. A previous study has shown that male patients with AF 

QT interval, P wave axis, heart rate, T wave axis, and QRS 
complex axis. Additionally, we performed an analysis of the 
risk of future pacemaker implantation associated with Afib 
and bundle branch block (BBB), and the results are shown 
in Supplemental Tables 1 and 2.

Figure  4 demonstrates the prognostic value of the AI-
predicted PMI (PACE group) in the internal and external 
validation groups after adjustments for sex and age. Patients 
in the PACE group had a significantly greater risk than those 
without an AI-predicted PMI (the no-PACE group). In the 
internal validation set, the PACE cohort had an HR of 7.49 
(95% CI: 5.40-10.39) for PMI after 90 days, an HR of 1.91 
(95% CI: 1.74–2.10) for all-cause mortality, and an HR of 
3.53 (95% CI: 2.73–4.57) for CVD mortality. The external 
validation set showed similar findings to the internal valida-
tion set, with an HR of 8.40 (95% CI: 6.30-11.19) for PMI 
after 90 days, an HR of 1.77 (95% CI: 1.61–1.94) for all-
cause mortality, and an HR of 4.14 (95% CI: 3.23–5.31) 
for CVD mortality, indicating the robustness of the model’s 
predictive performance. Furthermore, patients in the PACE 
group had a greater incidence of new-onset MACEs, such as 

Fig. 2  Summarizes the performance of our DLM model in predicting 
pacemaker implantation (PMI) within 30, 60, and 90 days in both the 
internal (A) and external validation sets (B). We used receiver oper-
ating characteristic (ROC) curves to evaluate the DLM’s predictive 
power based on the ECG data; the operating point was selected based 

on the maximum Youden’s index in the tuning set and is denoted by a 
circle mark on the ROC curve; we calculated the area under the curve 
(AUC), sensitivity (Sens.), specificity (Spec. ), positive predictive 
value (PPV), and negative predictive value (NPV) based on this oper-
ating point; DLM, deep learning model

 

1 3

Page 5 of 11     67 



Journal of Medical Systems           (2024) 48:67 

Recently, numerous studies have investigated the pre-
dictors of permanent PMI in patients who have undergone 
transcatheter aortic valve replacement (TAVR), which eas-
ily causes left bundle branch block (LBBB) due to injury 
to the conduction system during valve deployment. Mul-
tiple meta-analyses have demonstrated that certain ECG 
features, including first-degree atrioventricular (AV) block, 
preexisting right bundle branch block (RBBB), left ante-
rior fascicular block (LAFB), AF, and wider baseline QRS 
duration, can predict future PMI after TAVR [30–34]. In a 
Chinese study, the author identified new-onset LBBB and 
T-wave elevation in lead I as the primary independent pre-
dictors of PMI in patients undergoing TAVR [35]. Several 
researchers have employed machine learning (ML) models 
to forecast future PMIs. One unpublished study utilized a 
gradient boosting ML model to predict the requirement for 
PMI within 30 days. The study revealed that RBBB was 
an important predictive parameter on ECG [36]. A recent 
study showed that an ML-based approach could effectively 

who are above the age of 60 years and have congenital heart 
disease, or early HF, or a history of syncope, valvular heart 
disease, hypertension, ischemic heart disease or diabetes are 
at a higher risk of requiring PMI [25]. A study conducted in 
Finland has shown that risk factors associated with AV block 
include advanced age, male sex, a history of myocardial 
infarction, congestive HF, higher systolic blood pressure 
(greater than 120 mmHg), and elevated fasting glucose lev-
els (greater than 100 mg/dL) [26]. A separate study revealed 
that the presence of distal conduction disease, along with 
the absence of historical factors that predispose or precipi-
tate the condition, age older than 65 years, and a prolonged 
PR interval (collectively referred to as the DROP score), 
may serve as predictors of PMI in patients with unexplained 
syncope [27]. Additional studies have demonstrated that 
specific ECG parameters, including an abnormal QRS axis, 
prolonged QRS duration, prolonged QTc interval, and the 
presence of AF, may serve as indicators of the need for PMI 
or the risk of severe adverse events [28, 29].

Fig. 3  Relationship between the selected ECG features and the pre-
dicted PMI. The importance of each ECG feature was determined based 
on the information gained from the XGB model, and the R-squared 
(R-sq) value represents the coefficient of determination for using these 
selected ECG features to predict the PMI; the AI-ECG signals were 
classified into PACE or non-PACE groups based on previously estab-

lished operating points according to the receiver operating characteris-
tic (ROC) curve analysis; the analysis was conducted in both the inter-
nal and external validation sets, with a significant difference observed 
between the two groups (*** p < 0.001; PMI, pacemaker implantation; 
XGB, extreme gradient boosting; AI, artificial intelligence; ECG, elec-
trocardiogram; PACE, AI-predicted PMI)
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Fig. 5  Long-term incidence of new-onset AMI, stroke, CAD, AF, and HF in patients stratified by AI-ECG prediction and in the PACE and non–
PACE groups. AMI, acute myocardial infarction; CAD, coronary artery disease; AF, atrial fibrillation; HF, heart failure; PACE, AI-predicted PMI

 

Fig. 4  Long-term PMI after 90 days, all-cause mortality, and CVD mortality in patients in the PACE group and non–PACE group stratified by AI-
ECG prediction. CVD, cardiovascular disease; PACE, AI-predicted PMI
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as AVB and sinus node dysfunction, which are known risk 
factors for bradycardia and subsequent PMI. However, the 
association between ECG axes and bradycardia has not been 
fully explored in previous research. The ECG axes refer to 
the direction and magnitude of the electrical activity of the 
heart and can be represented as the frontal plane (i.e., the 
coronal plane) or the horizontal plane (i.e., the transverse 
plane). The normal range for the P-wave axis is 0 to + 75 
degrees, but several pathological conditions, such as atrial 
cardiomyopathy or fibrosis in the area of Bachmann’s bundle 
with intra-atrial conduction block, can result in an abnormal 
P-wave axis [39, 40]. An abnormal P-wave axis has been 
linked to mortality, AF, and stroke [41–45]. Various QRS 
axis abnormalities, including RBBB, LBBB, LAFB, and 
Left Posterior Fascicular Block, are associated with con-
duction disturbances. In cases of advanced conduction dis-
turbance, such as high-degree or complete AV block, PMI 
becomes necessary. Previous studies have demonstrated that 
conduction system disease, such as new-onset BBB disease, 
may be predictive of PMI after aortic valve surgery [46, 47]. 
However, no previous research has reported whether base-
line conduction disorders or the QRS axis can be used to 
predict future PMI in the general population; however, our 
current study shows that the QRS axis can be used to pre-
dict future PMI. An abnormal T-wave axis can be caused by 
several pathological factors, such as obesity and hyperten-
sion. One study revealed that an abnormal T-wave axis shift 
is independently associated with metabolic syndrome [48]. 
Additionally, T-wave axis orientation has been linked to an 
increased risk of coronary artery disease and heart failure 
[49]. Another study showed that an abnormal T-wave axis 
may be predictive of death from arrhythmia as well as all-
cause mortality and nonarrhythmic cardiac death [50].

Despite the limited amount of research on the relationship 
between the ECG axis or bradycardia and PMI, our study has 
provided valuable insights into the potential use of abnor-
mal P-waves, QRS complexes, and T-wave axes as predic-
tors of PMI. These findings have important implications for 
clinical practice, as they suggest that health care providers 
should consider assessing the ECG axis as part of routine 
screening for patients with suspected bradycardia or other 
cardiac conditions. By incorporating ECG axis assessment 
into routine screening, health care providers may be able 
to identify patients at increased risk of developing brady-
cardia and undergoing subsequent PMI. Early identification 
of patients at increased risk of developing bradycardia and 
undergoing subsequent PMI can enable health care provid-
ers to initiate appropriate interventions. These interventions 
may include adjusting medication regimens, controlling 
comorbidities, and monitoring for the prompt detection of 
conditions that may require PMI. By implementing these 
measures, health care providers can effectively manage their 

predict the need for PMI after TAVR [37]. The study exam-
ined data from 557 patients who underwent TAVR and were 
in sinus rhythm. Of these patients, 95 (17.1%) required PMI 
due to complete AV block (71 patients, 75%), pathological 
pauses and asystole (6 patients, 6%), or other symptomatic 
bradycardias (18 patients, 19%). The AI model used in the 
study utilized a random forest algorithm and accurately 
predicted which patients would require PMI. Several fac-
tors, including the delta QRS complex, delta PR, baseline 
QRS interval, baseline RBBB, and baseline PR interval, 
were strongly associated with the need for PMI after TAVR. 
These findings suggest that ML can be an effective tool for 
predicting the need for PMI after TAVR, thereby helping 
health care providers make more informed decisions about 
patient care.

However, it is more difficult to predict the PMI in the 
general population. Our data analysis demonstrated that our 
AI system has a high level of accuracy in predicting PMI 
within 30, 60, and 90 days in both the internal and exter-
nal validation sets, with a sensitivity exceeding 82% and 
specificity exceeding 80%. The external validation set pro-
duced similar results to the internal validation set, with all 
the AUC values for predicting the PMI within 30, 60, and 
90 days exceeding 0.85. This indicates that the AI model 
is effective at accurately predicting the PMI after its devel-
opment and tuning. Despite the relatively low PPV, which 
ranged from 1 to 2% due to the low incidence of PMI 
among patients who received ECGs in both hospitals, the 
NPV was found to be extremely high. This finding indicates 
that patients in the non-PACE group had a very low risk of 
PMI. Over a follow-up period of up to 8 years, patients in 
the PACE group exhibited a significantly greater incidence 
of PMI, with 11.2% of patients experiencing the condition 
compared to only 1.3% of patients in the non-PACE group.

Our XGB model revealed that the PR interval, corrected 
QT interval, QRS duration, P wave axis, T wave axis, ven-
tricular rate, and QRS axis were the most significant fea-
tures for predicting pacemaker implantation. These findings 
demonstrated the importance of not only the duration of 
ECG parameters, such as the PR interval, QT interval, QRS 
duration, and ventricular rate (RR interval) but also the 
vectors of atrial depolarization, ventricular depolarization, 
and ventricular repolarization, which are indicated by the P 
wave, QRS complex, and T wave axis, respectively. These 
findings suggest that abnormalities in the duration and ori-
entation of these ECG parameters can serve as indicators 
of bradycardia and may be useful in predicting the need for 
pacemaker implantation. Various studies have demonstrated 
the utility of ECG parameters such as the PR interval or 
QRS duration in predicting future pacemaker implantation 
and all-cause mortality [31, 32, 34, 38]. These intervals are 
commonly used to diagnose conduction abnormalities such 
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Conclusion

Our AI system, utilizing a DLM, is capable of analyzing 
patients’ ECGs and providing early warnings to clinicians 
and patients regarding the likelihood of future PMI, all-
cause mortality, and new-onset MACEs. This noninvasive 
tool can be particularly valuable in identifying asymptom-
atic patients who may benefit from timely interventions, 
such as medication adjustments or lifestyle modifications, 
before the patient becomes more symptomatic. By provid-
ing early warnings and personalized risk assessments, our 
AI system can help to optimize clinical decision-making 
and improve patient outcomes.
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