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Abstract
Medical	advances	prolonging	life	have	led	to	more	permanent	pacemaker	implants.	When	pacemaker	implantation	(PMI)	
is	 commonly	 caused	 by	 sick	 sinus	 syndrome	 or	 conduction	 disorders,	 predicting	 PMI	 is	 challenging,	 as	 patients	 often	
experience	related	symptoms.	This	study	was	designed	to	create	a	deep	learning	model	(DLM)	for	predicting	future	PMI	
from	ECG	data	and	assess	its	ability	to	predict	future	cardiovascular	events.	In	this	study,	a	DLM	was	trained	on	a	data-
set	of	158,471	ECGs	from	42,903	academic	medical	center	patients,	with	additional	validation	involving	25,640	medical	
center	 patients	 and	 26,538	 community	 hospital	 patients.	 Primary	 analysis	 focused	 on	 predicting	 PMI	 within	 90	 days,	
while	all-cause	mortality,	cardiovascular	disease	(CVD)	mortality,	and	the	development	of	various	cardiovascular	condi-
tions	were	addressed	with	secondary	analysis.	The	study’s	raw	ECG	DLM	achieved	area	under	 the	curve	(AUC)	values	
of	0.870,	0.878,	and	0.883	for	PMI	prediction	within	30,	60,	and	90	days,	respectively,	along	with	sensitivities	exceeding	
82.0%	and	specificities	over	81.9%	in	the	internal	validation.	Significant	ECG	features	included	the	PR	interval,	corrected	
QT	 interval,	 heart	 rate,	QRS	duration,	P-wave	 axis,	T-wave	 axis,	 and	QRS	complex	 axis.	The	AI-predicted	PMI	group	
had	higher	risks	of	PMI	after	90	days	(hazard	ratio	[HR]:	7.49,	95%	CI:	5.40-10.39),	all-cause	mortality	(HR:	1.91,	95%	
CI:	 1.74–2.10),	CVD	mortality	 (HR:	 3.53,	 95%	CI:	 2.73–4.57),	 and	 new-onset	 adverse	 cardiovascular	 events.	External	
validation	confirmed	 the	model’s	accuracy.	Through	ECG	analyses,	our	AI	DLM	can	alert	clinicians	and	patients	 to	 the	
possibility	of	future	PMI	and	related	mortality	and	cardiovascular	risks,	aiding	in	timely	patient	intervention.

Keywords	 Artificial	intelligence	·	Electrocardiogram	·	Deep	learning	model	·	Pacemaker	·	Major	adverse	cardiovascular	
events

Received: 31 January 2024 / Accepted: 11 July 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Artificial Intelligence-Enabled Electrocardiography Predicts Future 
Pacemaker Implantation and Adverse Cardiovascular Events

Yuan Hung1 · Chin Lin2,3,4 · Chin-Sheng Lin1 · Chiao-Chin Lee1 · Wen-Hui Fang2,5 · Chia-Cheng Lee6,7 ·  
Chih-Hung Wang8,9 · Dung-Jang Tsai2,4,10

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10916-024-02088-6&domain=pdf&date_stamp=2024-7-18


Journal of Medical Systems           (2024) 48:67 

Introduction

Permanent	pacemaker	therapy	is	most	commonly	indicated	
for	high-degree	atrioventricular	block	(AVB)	and	sinus	node	
dysfunction	patients	[1].	These	conditions	are	often	associ-
ated	with	degeneration	of	the	cardiac	conduction	system	and	
changes	in	intercellular	conduction,	which	can	be	caused	by	
either	cardiac	or	noncardiac	disease.	The	use	of	pacemakers	
has	 shown	a	continuous	 increase,	which	can	be	attributed	
to increasing life expectancy and aging populations world-
wide.	The	estimated	number	of	patients	undergoing	pace-
maker	 implantation	has	been	consistently	 increasing,	with	
an annual implant rate of approximately one million devices 
globally	 [2, 3].	Due	 to	 the	prevalence	of	 these	 conditions	
in	 older	 patients,	 the	 majority	 of	 patients	 requiring	 car-
diac	pacing	are	elderly,	with	more	than	80%	of	pacemaker	
implants	occurring	in	patients	older	than	65	years	[4].	Per-
manent	 pacemaker	 implantation	 (PMI)	 not	 only	 enhances	
the	survival	rate	but	also	significantly	improves	quality	of	
life	as	evidenced	by	various	studies	conducted	on	patients	
receiving	 pacing	 therapy	 [5–13].	However,	 predicting	 the	
need	for	PMI	is	challenging	because	some	patients	may	not	
exhibit	clear	symptoms	until	 the	condition	has	progressed	
to	 a	 severe	 stage,	 such	 as	 involving	 injuries	 from	 falling	
or	even	cardiac	arrest.	In	addition,	certain	risk	factors	that	
increase	 the	 likelihood	 of	 PMI,	 such	 as	 hypertension	 and	
diabetes,	can	be	present	in	individuals	without	any	obvious	
signs	of	heart	disease.	This	can	make	it	difficult	to	identify	
those	who	would	benefit	from	a	PMI	before	they	experience	
a	cardiac	event.	As	a	result,	there	is	a	need	for	more	accurate	
and	reliable	methods	to	predict	the	need	for	future	PMI.

Artificial	 intelligence	 (AI)	 has	 emerged	 in	 the	medical	
field	and	is	being	facilitated	by	technological	advancements	
in	machine	 learning	 [14, 15].	These	 advances	 include	 the	
use	 of	 structured	 data	 sources,	 which	 can	 be	 captured	 in	
a	 spreadsheet	 format,	 unstructured	 data	 sources,	 such	 as	
free	text	in	electronic	medical	records	(EMRs),	and	medi-
cal	 images,	 such	as	electrocardiograms	 (ECGs)	and	echo-
cardiography.	With	the	assistance	of	deep	learning	models	
(DLMs),	AI	 systems	 can	 develop	 highly	 accurate	 clinical	
prediction	 models,	 which	 are	 categorized	 into	 two	major	
groups:	 diagnostic	 prediction	models	 and	 prognostic	 pre-
diction	models	[16, 17].	AI	is	being	increasingly	utilized	to	
address	various	health	care	challenges	related	to	CVD.	Some	
examples	of	this	include	the	automated	detection	of	cardiac	
arrhythmias	from	ambulatory	ECGs,	the	early	detection	of	
aortic	stenosis	and	acute	myocardial	infarction	(AMI),	and	
the	 prediction	 of	 future	 adverse	 cardiovascular	 events	 in	
patients	receiving	digoxin	therapy	[16, 18–20].	This	study	
was	designed	to	utilize	DLM-assisted	AI	to	analyze	ECGs	
for	 the	 early	detection	of	 the	need	 for	PMI.	Furthermore,	
since	ECGs	contain	a	wealth	of	physical	 information	 that	

can	predict	future	CVD	incidence,	we	hypothesized	that	this	
model	 could	 provide	 additional	 information	 on	 the	 likeli-
hood	of	major	adverse	cardiovascular	events	(MACEs).

Methods

Data Source and Population

We	conducted	a	study	to	develop	and	evaluate	a	DLM	by	
retrospectively	analyzing	ECGs	collected	from	two	hospi-
tals	between	January	1,	2010,	and	April	30,	2021.	The	two	
hospitals	 included	 an	 academic	 medical	 center	 in	 Neihu	
District	 (hospital	A)	 and	 a	 community	hospital	 in	Zhong-
zheng	District	 (hospital	B).	To	ensure	ethical	compliance,	
the	 study	was	 reviewed	and	 approved	by	 the	 Institutional	
Ethics	 Committee	 of	 the	 Tri-Service	 General	 Hospital	
(C202105049).	Patients	under	20	years	of	age	were	excluded	
from	the	study.	Figure	1	shows	the	assignment	of	samples	
in	this	study.	There	were	85,820	patients	with	at	least	one	
ECG	in	hospital	A.	The	42,903	patients	were	included	in	the	
development	cohort,	which	included	158,471	ECG	records	
for	DLM	training.	A	total	of	17,277	patients	were	assigned	
to	the	tuning	cohort.	A	total	of	64,462	ECGs	were	obtained	
to	guide	the	training	process	and	determine	the	optimal	oper-
ating	 point	 for	 subsequent	 usage.	 Finally,	 25,640	 patients	
were	assigned	to	an	internal	validation	set,	which	included	
only	the	first	ECGs	that	were	used	for	the	accuracy	test	and	
follow-up	analysis.	We	also	enrolled	26,538	patients	in	hos-
pital	B	using	the	same	inclusion	criteria	as	those	in	the	inter-
nal	validation	set	for	the	external	validation	set	to	verify	the	
extrapolation	of	the	DLM.

Data Collection

A	12-lead	ECG	was	recorded	at	a	500-Hz	frequency	for	a	
duration	of	ten	seconds,	and	the	raw	ECG	traces	were	used	
to	train	the	DLMs.	Besides	the	raw-data	ECG	tracings,	addi-
tionally	analyzed	ECG	data	included	various	abnormalities	
and	findings,	comprising	31	diagnostic	pattern	classes	and	
8	 continuous	ECG	measurements	 obtained	 from	quantita-
tive	measurements	and	abnormal	findings	based	on	standard	
phrases	in	the	Philips’	system	(PageWriter	TC30	and	TC50,	
Philips,	Amsterdam,	Netherlands).	Specifically,	 the	abnor-
mal	 ECG	 patterns	 detected	 included:	 abnormal	 T	 wave,	
atrial	 fibrillation,	 atrial	 flutter,	 atrial	 premature	 complex,	
complete	 atrioventricular	 (AV)	 block,	 complete	 bundle	
branch	blocks	(including	complete	left	bundle	branch	block	
and	 complete	 right	 bundle	 branch	 block),	 first-degree	AV	
block,	incomplete	bundle	branch	blocks	(including	incom-
plete	left	bundle	branch	block	and	incomplete	right	bundle	
branch	 block),	 ischemia/infarction	 (indicating	 myocardial	

1 3

   67  Page 2 of 11



Journal of Medical Systems           (2024) 48:67 

ischemia	or	infarction),	junctional	rhythm,	left	anterior	fas-
cicular	 block,	 left	 atrial	 enlargement,	 left	 axis	 deviation,	
left	posterior	fascicular	block,	left	ventricular	hypertrophy,	
low	QRS	voltage,	pacemaker	rhythm,	prolonged	QT	inter-
val,	right	atrial	enlargement,	right	ventricular	hypertrophy,	
second-degree	AV	 block,	 sinus	 bradycardia,	 sinus	 pause,	
normal	 sinus	 rhythm,	 sinus	 tachycardia,	 supraventricular	
tachycardia,	 ventricular	 premature	 complex,	 ventricular	
tachycardia,	 and	Wolff-Parkinson-White	 syndrome.	These	
latter data were used to generate and train an extreme gra-
dient	boosting	(XGB)	model,	as	previously	described	[21].	
They	reflect	a	variety	of	cardiac	conduction	system	abnor-
malities,	 arrhythmias,	 structural	 abnormalities,	 and	 other	
conditions.	 ECG	 measurements	 with	 missing	 data	 were	
imputed	using	multiple	imputation	methods	[22].	The	dis-
ease	histories	were	based	on	the	International	Classification	
of	Diseases,	Ninth	Revision	and	Tenth	Revision	(ICD-9	and	
ICD-10,	respectively)	as	described	previously	[23].	The	pri-
mary	objective	was	to	predict	PMI	90	days	after	the	index	
ECG.	Patient	status	was	defined	by	EMRs	and	updated	by	
hospital	 staff.	Nonimplant	 pacemaker	 data	were	 censored	
at	 the	patient’s	 last	 known	 live	hospital	 visit	 to	 limit	bias	
from	 incomplete	 records.	We	 also	 performed	 a	 secondary	
outcome	analysis	of	all-cause	mortality,	CVD	mortality	and	
new-onset	MACEs,	 such	 as	AMI,	 stroke,	 coronary	 artery	
disease	 (CAD),	 atrial	 fibrillation	 (AF),	 and	 heart	 failure	
(HF).	New-onset	events	were	defined	as	 records	of	corre-
sponding	 ICD	 codes.	 Patients	who	met	 any	 of	 the	 above	

criteria	before	the	index	date	of	the	ECG	were	excluded	and	
defined	as	having	a	corresponding	disease	history.

Implementation of the Deep Learning Model

The	major	architecture	of	 the	proposed	survival	DLM	for	
the	prediction	of	PMI	and	the	detailed	derivation	and	expla-
nation	 process	 are	 summarized	 in	 Supplement	 Fig.	 1. In 
brief,	each	ECG	was	recorded	as	a	standard	12	leads	con-
sisting	of	5000	number	sequences,	and	a	5000	× 12 matrix 
was	generated	based	on	these	sequences	for	the	DLM.	An	
input	format	of	this	architecture	is	a	4096	×	12	matrix	[21].	
We	 developed	 a	DLM	using	 the	Cox	 proportional	 hazard	
model	to	conduct	survival	analysis,	 the	model	being	com-
monly	used	for	prospective	studies	with	a	follow-up	period	
to	observe	event	occurrence.	The	DLMs	were	trained	with	
a	batch	size	of	32	using	an	initial	learning	rate	of	0.001	and	
an	Adam	optimizer	with	standard	parameters	(β1	= 0.9 and 
β2	=	0.999).	The	learning	rate	was	decayed	by	a	factor	of	10	
each	 time	 the	 loss	of	 the	validation	cohort	plateaued	after	
an	 epoch.	To	prevent	 the	networks	 from	overfitting,	 early	
stopping	was	performed	by	saving	the	network	after	every	
epoch	and	choosing	the	saved	DLMs	with	 the	 lowest	 loss	
in	the	validation	cohort.	The	only	regularization	method	for	
avoiding	 overfitting	was	 L2	 regularization,	 for	 which	 the	
coefficient	was	10− 4	in	this	study.

Fig. 1	 Flowchart	diagram	of	development,	tuning,	internal	validation,	
external	 validation	 set	 generation	 and	 ECG	 labeling	 for	 pacemaker	
implantation.	Schematic	of	the	dataset	creation	and	analysis	strategy,	
which	was	devised	to	assure	a	robust	and	reliable	dataset	for	training,	
validating,	 and	 testing	 the	 network;	 to	 prevent	 cross-contamination	

among	 the	 training,	validation,	 and	 test	 datasets,	 each	patient’s	data	
were	 exclusively	 used	 in	 one	 dataset;	 the	Methods section provides 
detailed	 information	 on	 how	 each	 dataset	was	 utilized;	DLM,	 deep	
learning	model;	ECG,	electrocardiogram
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hyperlipidemia,	 chronic	kidney	disease,	 stroke,	CAD,	AF,	
and	chronic	obstructive	pulmonary	disease	but	a	lower	pro-
portion	of	male	patients	than	did	the	other	sets.	Conversely,	
there	were	fewer	instances	of	AMI	in	the	internal	validation	
set	than	in	the	other	sets.

In Fig. 2,	we	present	the	performance	of	the	DLM	in	pre-
dicting	the	PMI	within	30,	60,	and	90	days	in	both	the	inter-
nal	and	external	validation	sets.	With	respect	to	the	internal	
validation	set,	the	AUC	for	predicting	PMI	within	30	days	
was	0.870,	with	a	Sens	of	82.0%,	a	Spec	of	81.9%,	a	PPV	of	
1.2%,	and	an	NPV	of	99.9%.	The	AUC	values	for	predicting	
the	PMI	within	60	days	and	90	days	were	similar	(0.878	and	
0.883,	respectively).	With	respect	to	the	external	validation	
set,	the	AUC	for	detecting	PMI	within	30	days	was	0.916,	
with	 a	Sens	 of	 85.3%,	 a	Spec	 of	 80.9%,	 a	PPV	of	 1.2%,	
and	an	NPV	of	100.0%.	The	AUCs	for	predicting	the	PMI	
within	60	and	90	days	were	0.920	and	0.919,	respectively.	
The	results	obtained	from	the	external	validation	set	were	
consistent	with	those	of	the	internal	validation	set,	provid-
ing	evidence	for	the	ability	of	the	model	to	accurately	pre-
dict future pacemaker implantation.

Figure 3	presents	a	detailed	analysis	of	the	importance	of	
the	12	most	important	ECG	features	in	relation	to	the	PMI	
as	assessed	by	the	information	gained	from	the	XGB	model.	
The	R2	values	were	59.5%	and	62.7%	based	on	all	the	tra-
ditional	ECG	features	in	the	internal	and	external	validation	
sets,	 respectively.	 In	 the	 internal	 validation	 set,	 the	 top	 7	
ECG	features	that	contributed	to	PMI	were	the	PR	interval,	
corrected	QT	interval,	QRS	duration,	P	wave	axis,	T	wave	
axis,	 heart	 rate,	 and	QRS	 complex	 axis.	 Similarly,	 in	 the	
external	validation	set,	the	top	7	ECG	features	that	contrib-
uted	to	PMI	were	the	PR	interval,	QRS	duration,	corrected	

Statistical Analysis

We	 provided	 descriptive	 statistics	 for	 the	 different	 sets,	
including means and standard deviations for continuous 
variables	and	counts	and	percentages	 for	 categorical	vari-
ables.	The	 performance	 of	 the	DLMs	was	 assessed	 using	
receiver	 operating	 characteristic	 (ROC)	 curves,	 and	 the	
area	under	the	curve	(AUC),	sensitivity	(Sens),	specificity	
(Spec),	positive	predictive	value	(PPV),	and	negative	pre-
dictive	value	(NPV)	were	reported.	The	optimal	operating	
point	was	selected	based	on	Youden’s	index	in	the	training	
set.	For	the	additionally	collected	ECG	data,	we	employed	
an	 XGB	 model	 to	 rank	 the	 importance	 of	 variables	 and	
investigate	 the	 relationship	 between	 PMI	 and	 explainable	
features.	Furthermore,	we	used	multivariable	Cox	propor-
tional	 hazard	 models	 to	 analyze	 the	 association	 between	
baseline	 characteristics	 and	 outcomes	 of	 interest.	 For	 the	
analysis	of	new-onset	outcomes,	we	will	analyze	the	popu-
lation	without	a	history	of	that	disease.	We	reported	hazard	
ratios	 (HRs)	 and	 95%	confidence	 intervals	 (95%	CIs)	 for	
comparisons.	 All	 the	 statistical	 analyses	 were	 conducted	
using	R	(version	3.4.4;	R	Core	Team,	2018),	for	which	the	
significance	level	was	set	at	p < 0.05.

Results

Table	1	displays	the	baseline	characteristics	of	the	patients	
in	 the	 four	 distinct	 sets:	 development,	 tuning,	 internal	
validation,	 and	 external	 validation.	 The	 internal	 valida-
tion	 set	 had	 a	 significantly	 greater	 proportion	 of	 older	
patients	and	comorbidities,	such	as	diabetes,	hypertension,	

Development Tuning Internal 
validation

External
validation

Demography
Gender	(male) 86,043(54.3%) 34,584(53.7%) 57,699(52.4%) 50,380(53.1%)
Age	(years) 63.8 ± 17.0 63.6 ± 17.1 66.4 ± 17.0 64.0 ± 17.0
Height	(cm) 162.2 ± 9.1 162.4 ± 9.1 162.6 ± 9.0 162.2 ± 9.1
Weight	(cm) 64.5 ± 13.9 64.5 ± 13.8 65.2 ± 14.0 64.3 ± 13.8
BMI	(kg/m2) 24.4 ± 4.3 24.4 ± 4.3 24.6 ± 4.3 24.4 ± 4.3
Primary outcome
Implant	pacemaker	within	90	days 1171(0.9%) 482(0.9%) 833(0.9%) 612(0.8%)
Disease history
Diabetes	mellitus 50,412(31.8%) 19,984(31.0%) 44,224(40.1%) 30,386(32.0%)
Hypertension 18,460(11.7%) 7336(11.4%) 17,790(16.1%) 11,445(12.1%)
Hyperlipidemia 64,622(40.8%) 26,186(40.6%) 60,323(54.8%) 38,433(40.5%)
Chronic	kidney	disease 45,296(28.6%) 17,950(27.9%) 35,054(31.8%) 26,940(28.4%)
Acute myocardial infarction 9405(5.9%) 3762(5.8%) 6159(5.6%) 5559(5.9%)
Stroke 28,065(17.7%) 11,648(18.1%) 26,528(24.1%) 17,026(17.9%)
Coronary artery disease 51,361(32.4%) 20,503(31.8%) 45,129(41.0%) 30,581(32.2%)
Atrial	fibrillation 13,335(8.4%) 5285(8.2%) 12,309(11.2%) 7521(7.9%)
Chronic	obstructive	pulmonary	
disease

31,497(19.9%) 12,511(19.4%) 35,212(32.0%) 18,729(19.7%)

Table 1	 Baseline	characteristics

Abbreviations	BMI,	body	mass	
index
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AMI,	stroke,	CAD,	AF,	and	HF,	than	did	those	in	the	non-
PACE	group	in	both	validation	sets	(Fig.	5).

Discussion

This	DLM-enabled	AI	ECG	analysis	model	accurately	pre-
dicted	future	PMI,	all-cause	mortality,	and	CVD	mortality.	
Additionally,	 this	AI	prediction	model	provided	additional	
information	 on	 new-onset	MACEs.	 Patients	 in	 the	 PACE	
group	had	a	higher	risk	of	pacemaker	implantation	after	90	
days,	 all-cause	 mortality,	 CVD	 mortality,	 and	 new-onset	
MACEs,	such	as	AMI,	stroke,	CAD,	AF,	and	HF.

The	incidence	of	PMI	increases	with	age,	and	it	is	esti-
mated	 that	 approximately	70–80%	of	all	permanent	pace-
makers	are	implanted	in	patients	aged	65	or	older.	Previous	
surveys	 have	 identified	 high-degree	 AVB	 and	 sick	 sinus	
syndrome	as	the	leading	indications	for	PMI	[2].	Both	the	
increasing	 incidence	and	declining	mortality	 rates	of	PMI	
have	contributed	to	its	growing	prevalence	[24].	However,	
predicting	 the	need	 for	PMI	 in	 a	patient	 can	be	 challeng-
ing.	A	previous	study	has	shown	that	male	patients	with	AF	

QT	interval,	P	wave	axis,	heart	rate,	T	wave	axis,	and	QRS	
complex	axis.	Additionally,	we	performed	an	analysis	of	the	
risk	of	future	pacemaker	implantation	associated	with	Afib	
and	bundle	branch	block	(BBB),	and	the	results	are	shown	
in	Supplemental	Tables	1 and 2.

Figure 4	 demonstrates	 the	 prognostic	 value	 of	 the	AI-
predicted	 PMI	 (PACE	 group)	 in	 the	 internal	 and	 external	
validation	groups	after	adjustments	for	sex	and	age.	Patients	
in	the	PACE	group	had	a	significantly	greater	risk	than	those	
without	an	AI-predicted	PMI	(the	no-PACE	group).	In	the	
internal	validation	set,	the	PACE	cohort	had	an	HR	of	7.49	
(95%	CI:	5.40-10.39)	for	PMI	after	90	days,	an	HR	of	1.91	
(95%	CI:	1.74–2.10)	for	all-cause	mortality,	and	an	HR	of	
3.53	(95%	CI:	2.73–4.57)	for	CVD	mortality.	The	external	
validation	set	showed	similar	findings	to	the	internal	valida-
tion	set,	with	an	HR	of	8.40	(95%	CI:	6.30-11.19)	for	PMI	
after	90	days,	an	HR	of	1.77	(95%	CI:	1.61–1.94)	for	all-
cause	mortality,	 and	 an	HR	 of	 4.14	 (95%	CI:	 3.23–5.31)	
for	CVD	mortality,	indicating	the	robustness	of	the	model’s	
predictive	performance.	Furthermore,	patients	in	the	PACE	
group	had	a	greater	incidence	of	new-onset	MACEs,	such	as	

Fig. 2	 Summarizes	the	performance	of	our	DLM	model	in	predicting	
pacemaker	implantation	(PMI)	within	30,	60,	and	90	days	in	both	the	
internal	(A)	and	external	validation	sets	(B).	We	used	receiver	oper-
ating	 characteristic	 (ROC)	 curves	 to	 evaluate	 the	DLM’s	 predictive	
power	based	on	the	ECG	data;	the	operating	point	was	selected	based	

on	the	maximum	Youden’s	index	in	the	tuning	set	and	is	denoted	by	a	
circle	mark	on	the	ROC	curve;	we	calculated	the	area	under	the	curve	
(AUC),	 sensitivity	 (Sens.),	 specificity	 (Spec.	 ),	 positive	 predictive	
value	(PPV),	and	negative	predictive	value	(NPV)	based	on	this	oper-
ating	point;	DLM,	deep	learning	model
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Recently,	 numerous	 studies	 have	 investigated	 the	 pre-
dictors	of	permanent	PMI	in	patients	who	have	undergone	
transcatheter	aortic	valve	replacement	(TAVR),	which	eas-
ily	causes	 left	bundle	branch	block	 (LBBB)	due	 to	 injury	
to	 the	 conduction	 system	 during	 valve	 deployment.	Mul-
tiple	 meta-analyses	 have	 demonstrated	 that	 certain	 ECG	
features,	including	first-degree	atrioventricular	(AV)	block,	
preexisting	 right	 bundle	 branch	 block	 (RBBB),	 left	 ante-
rior	fascicular	block	(LAFB),	AF,	and	wider	baseline	QRS	
duration,	can	predict	future	PMI	after	TAVR	[30–34].	In	a	
Chinese	study,	 the	author	 identified	new-onset	LBBB	and	
T-wave	elevation	in	lead	I	as	the	primary	independent	pre-
dictors	of	PMI	in	patients	undergoing	TAVR	[35].	Several	
researchers	have	employed	machine	learning	(ML)	models	
to	 forecast	 future	PMIs.	One	unpublished	study	utilized	a	
gradient	boosting	ML	model	to	predict	the	requirement	for	
PMI	within	 30	 days.	The	 study	 revealed	 that	 RBBB	was	
an	 important	 predictive	 parameter	 on	ECG	 [36].	A	 recent	
study	showed	that	an	ML-based	approach	could	effectively	

who	are	above	the	age	of	60	years	and	have	congenital	heart	
disease,	or	early	HF,	or	a	history	of	syncope,	valvular	heart	
disease,	hypertension,	ischemic	heart	disease	or	diabetes	are	
at	a	higher	risk	of	requiring	PMI	[25].	A	study	conducted	in	
Finland	has	shown	that	risk	factors	associated	with	AV	block	
include	 advanced	 age,	 male	 sex,	 a	 history	 of	 myocardial	
infarction,	 congestive	 HF,	 higher	 systolic	 blood	 pressure	
(greater	than	120	mmHg),	and	elevated	fasting	glucose	lev-
els	(greater	than	100	mg/dL)	[26].	A	separate	study	revealed	
that	 the	 presence	of	 distal	 conduction	disease,	 along	with	
the	absence	of	historical	factors	that	predispose	or	precipi-
tate	the	condition,	age	older	than	65	years,	and	a	prolonged	
PR	 interval	 (collectively	 referred	 to	 as	 the	DROP	 score),	
may	serve	as	predictors	of	PMI	in	patients	with	unexplained	
syncope	 [27].	 Additional	 studies	 have	 demonstrated	 that	
specific	ECG	parameters,	including	an	abnormal	QRS	axis,	
prolonged	QRS	duration,	prolonged	QTc	 interval,	and	 the	
presence	of	AF,	may	serve	as	indicators	of	the	need	for	PMI	
or	the	risk	of	severe	adverse	events	[28, 29].

Fig. 3	 Relationship	 between	 the	 selected	ECG	 features	 and	 the	 pre-
dicted	PMI.	The	importance	of	each	ECG	feature	was	determined	based	
on	 the	 information	gained	 from	 the	XGB	model,	 and	 the	R-squared	
(R-sq)	value	represents	the	coefficient	of	determination	for	using	these	
selected	ECG	features	 to	predict	 the	PMI;	 the	AI-ECG	signals	were	
classified	into	PACE	or	non-PACE	groups	based	on	previously	estab-

lished	operating	points	according	to	the	receiver	operating	characteris-
tic	(ROC)	curve	analysis;	the	analysis	was	conducted	in	both	the	inter-
nal	and	external	validation	sets,	with	a	significant	difference	observed	
between	the	two	groups	(***	p <	0.001;	PMI,	pacemaker	implantation;	
XGB,	extreme	gradient	boosting;	AI,	artificial	intelligence;	ECG,	elec-
trocardiogram;	PACE,	AI-predicted	PMI)
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Fig. 5	 Long-term	incidence	of	new-onset	AMI,	stroke,	CAD,	AF,	and	HF	in	patients	stratified	by	AI-ECG	prediction	and	in	the	PACE	and	non–
PACE	groups.	AMI,	acute	myocardial	infarction;	CAD,	coronary	artery	disease;	AF,	atrial	fibrillation;	HF,	heart	failure;	PACE,	AI-predicted	PMI

 

Fig. 4	 Long-term	PMI	after	90	days,	all-cause	mortality,	and	CVD	mortality	in	patients	in	the	PACE	group	and	non–PACE	group	stratified	by	AI-
ECG	prediction.	CVD,	cardiovascular	disease;	PACE,	AI-predicted	PMI
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as	AVB	and	sinus	node	dysfunction,	which	are	known	risk	
factors	for	bradycardia	and	subsequent	PMI.	However,	the	
association	between	ECG	axes	and	bradycardia	has	not	been	
fully	explored	in	previous	research.	The	ECG	axes	refer	to	
the	direction	and	magnitude	of	the	electrical	activity	of	the	
heart	and	can	be	 represented	as	 the	 frontal	plane	(i.e.,	 the	
coronal	plane)	or	 the	horizontal	plane	 (i.e.,	 the	 transverse	
plane).	The	normal	range	for	the	P-wave	axis	is	0	to	+ 75 
degrees,	but	several	pathological	conditions,	such	as	atrial	
cardiomyopathy	or	fibrosis	in	the	area	of	Bachmann’s	bundle	
with	intra-atrial	conduction	block,	can	result	in	an	abnormal	
P-wave	axis	 [39, 40].	An	abnormal	P-wave	axis	has	been	
linked	 to	mortality,	AF,	 and	 stroke	 [41–45].	Various	QRS	
axis	 abnormalities,	 including	 RBBB,	 LBBB,	 LAFB,	 and	
Left	 Posterior	 Fascicular	 Block,	 are	 associated	 with	 con-
duction	disturbances.	In	cases	of	advanced	conduction	dis-
turbance,	such	as	high-degree	or	complete	AV	block,	PMI	
becomes	necessary.	Previous	studies	have	demonstrated	that	
conduction	system	disease,	such	as	new-onset	BBB	disease,	
may	be	predictive	of	PMI	after	aortic	valve	surgery	[46, 47].	
However,	no	previous	research	has	reported	whether	base-
line	conduction	disorders	or	 the	QRS	axis	 can	be	used	 to	
predict	future	PMI	in	the	general	population;	however,	our	
current	study	shows	that	the	QRS	axis	can	be	used	to	pre-
dict	future	PMI.	An	abnormal	T-wave	axis	can	be	caused	by	
several	pathological	factors,	such	as	obesity	and	hyperten-
sion.	One	study	revealed	that	an	abnormal	T-wave	axis	shift	
is	independently	associated	with	metabolic	syndrome	[48].	
Additionally,	T-wave	axis	orientation	has	been	linked	to	an	
increased	 risk	of	coronary	artery	disease	and	heart	 failure	
[49].	Another	study	showed	that	an	abnormal	T-wave	axis	
may	be	predictive	of	death	from	arrhythmia	as	well	as	all-
cause	mortality	and	nonarrhythmic	cardiac	death	[50].

Despite	the	limited	amount	of	research	on	the	relationship	
between	the	ECG	axis	or	bradycardia	and	PMI,	our	study	has	
provided	valuable	insights	 into	the	potential	use	of	abnor-
mal	P-waves,	QRS	complexes,	and	T-wave	axes	as	predic-
tors	of	PMI.	These	findings	have	important	implications	for	
clinical	practice,	as	they	suggest	that	health	care	providers	
should	consider	assessing	 the	ECG	axis	as	part	of	 routine	
screening	for	patients	with	suspected	bradycardia	or	other	
cardiac	conditions.	By	incorporating	ECG	axis	assessment	
into	 routine	 screening,	 health	 care	 providers	may	 be	 able	
to	 identify	patients	 at	 increased	 risk	of	developing	brady-
cardia	and	undergoing	subsequent	PMI.	Early	identification	
of	patients	at	increased	risk	of	developing	bradycardia	and	
undergoing	subsequent	PMI	can	enable	health	care	provid-
ers	to	initiate	appropriate	interventions.	These	interventions	
may include adjusting medication regimens, controlling 
comorbidities,	and	monitoring	for	 the	prompt	detection	of	
conditions	 that	may	 require	 PMI.	 By	 implementing	 these	
measures,	health	care	providers	can	effectively	manage	their	

predict	the	need	for	PMI	after	TAVR	[37].	The	study	exam-
ined	data	from	557	patients	who	underwent	TAVR	and	were	
in	sinus	rhythm.	Of	these	patients,	95	(17.1%)	required	PMI	
due	to	complete	AV	block	(71	patients,	75%),	pathological	
pauses	and	asystole	(6	patients,	6%),	or	other	symptomatic	
bradycardias	(18	patients,	19%).	The	AI	model	used	in	the	
study	 utilized	 a	 random	 forest	 algorithm	 and	 accurately	
predicted	which	patients	would	 require	PMI.	Several	 fac-
tors,	 including	 the	delta	QRS	complex,	delta	PR,	baseline	
QRS	 interval,	 baseline	 RBBB,	 and	 baseline	 PR	 interval,	
were	strongly	associated	with	the	need	for	PMI	after	TAVR.	
These	findings	suggest	that	ML	can	be	an	effective	tool	for	
predicting	 the	 need	 for	 PMI	 after	TAVR,	 thereby	 helping	
health	care	providers	make	more	informed	decisions	about	
patient care.

However,	 it	 is	more	 difficult	 to	 predict	 the	 PMI	 in	 the	
general	population.	Our	data	analysis	demonstrated	that	our	
AI	system	has	a	high	 level	of	accuracy	 in	predicting	PMI	
within	30,	60,	and	90	days	 in	both	 the	 internal	and	exter-
nal	 validation	 sets,	with	 a	 sensitivity	 exceeding	 82%	 and	
specificity	exceeding	80%.	The	external	validation	set	pro-
duced	similar	results	to	the	internal	validation	set,	with	all	
the	AUC	values	for	predicting	the	PMI	within	30,	60,	and	
90	days	 exceeding	0.85.	This	 indicates	 that	 the	AI	model	
is	effective	at	accurately	predicting	the	PMI	after	its	devel-
opment	and	tuning.	Despite	the	relatively	low	PPV,	which	
ranged	 from	 1	 to	 2%	 due	 to	 the	 low	 incidence	 of	 PMI	
among	patients	who	 received	ECGs	 in	both	hospitals,	 the	
NPV	was	found	to	be	extremely	high.	This	finding	indicates	
that	patients	in	the	non-PACE	group	had	a	very	low	risk	of	
PMI.	Over	a	follow-up	period	of	up	to	8	years,	patients	in	
the	PACE	group	exhibited	a	significantly	greater	incidence	
of	PMI,	with	11.2%	of	patients	experiencing	the	condition	
compared	to	only	1.3%	of	patients	in	the	non-PACE	group.

Our	XGB	model	revealed	that	the	PR	interval,	corrected	
QT	interval,	QRS	duration,	P	wave	axis,	T	wave	axis,	ven-
tricular	 rate,	 and	QRS	axis	were	 the	most	 significant	 fea-
tures	for	predicting	pacemaker	implantation.	These	findings	
demonstrated	 the	 importance	 of	 not	 only	 the	 duration	 of	
ECG	parameters,	such	as	the	PR	interval,	QT	interval,	QRS	
duration,	 and	 ventricular	 rate	 (RR	 interval)	 but	 also	 the	
vectors	of	atrial	depolarization,	ventricular	depolarization,	
and	ventricular	repolarization,	which	are	indicated	by	the	P	
wave,	QRS	complex,	and	T	wave	axis,	respectively.	These	
findings	suggest	that	abnormalities	in	the	duration	and	ori-
entation	 of	 these	ECG	parameters	 can	 serve	 as	 indicators	
of	bradycardia	and	may	be	useful	in	predicting	the	need	for	
pacemaker	implantation.	Various	studies	have	demonstrated	
the	 utility	 of	 ECG	 parameters	 such	 as	 the	 PR	 interval	 or	
QRS duration in predicting future pacemaker implantation 
and	all-cause	mortality	[31, 32, 34, 38].	These	intervals	are	
commonly	used	to	diagnose	conduction	abnormalities	such	
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Conclusion

Our	AI	 system,	 utilizing	 a	DLM,	 is	 capable	 of	 analyzing	
patients’	ECGs	and	providing	early	warnings	 to	clinicians	
and	 patients	 regarding	 the	 likelihood	 of	 future	 PMI,	 all-
cause	mortality,	and	new-onset	MACEs.	This	noninvasive	
tool	can	be	particularly	valuable	in	identifying	asymptom-
atic	 patients	 who	 may	 benefit	 from	 timely	 interventions,	
such	as	medication	adjustments	or	 lifestyle	modifications,	
before	the	patient	becomes	more	symptomatic.	By	provid-
ing	early	warnings	and	personalized	risk	assessments,	our	
AI	 system	 can	 help	 to	 optimize	 clinical	 decision-making	
and improve patient outcomes.
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